博客
关于我
【人工智能】GraphRAG,通过结合大型语言模型(LLM)和知识图谱,显著提高了AI在处理复杂信息和大型数据集上的问答和主题发现能力。
阅读量:586 次
发布时间:2019-03-11

本文共 838 字,大约阅读时间需要 2 分钟。

一、GraphRAG 是什么

大型语言模型(LLM)在实际应用中不可避免地面临着“幻觉”问题,这使得其在某些场景下的生成效果显得不够理想。为了解决这一问题,RAG(检索增强生成)方法应运而生,通过结合知识图谱显著提升了LLM的生成质量与可用性。GraphRAG是由微软研究院开发的一种改进型RAG方案,它通过整合大型语言模型和知识图谱技术,进一步提升了AI系统在处理复杂信息和大规模数据集时的问答能力与主题发现效果。与传统的RAG方法相比,GraphRAG在对大型数据集的全面理解方面表现出了更优异的性能。

二、GraphRAG的工作原理

GraphRAG的核心工作原理包含以下几个关键步骤:

第一步是知识图谱的构建。在这一阶段,GraphRAG从原始文本中自动提取有意义的知识点,并将其组织成一个结构化的网络。这个网络中的每一个节点都代表一个“想法”或“概念”,而节点之间的连接则体现了这些想法之间的相关性与关联性。

第二步是社区层次结构的建立。基于上述知识图谱,GraphRAG将这些相关的想法进一步聚类,形成所谓的“社区”。每个社区可以看作是一个包含相关概念的子图,成员之间具有强烈的关联性和相似性。

第三步是摘要生成。对于每一个社区,GraphRAG会自动生成一个简洁的摘要。这个摘要旨在抓住社区中的核心观点,既能反映关键思想,又不会陷入细节的泥潭中。

最后一步是知识组织与结构的应用。在执行基于RAG的任务(如检索与生成混合型任务)时,GraphRAG会利用已经构建好的知识图谱和社区结构,显著提升任务的效率与准确性。

三、GraphRAG的优势

GraphRAG相较于传统的基于向量的RAG方法具有明显的优势。首先,它能够生成更加准确、具有上下文相关性的回答。其次,这一方法在处理复杂和私有数据集时表现出色,能够更好地支持AI系统的推理能力。通过以更智能的方式组织信息,GraphRAG为AI决策提供了更强的支持,使其能够更灵活地应对复杂问题并给出更加可靠的响应。

转载地址:http://isqvz.baihongyu.com/

你可能感兴趣的文章
mysql添加用户及权限
查看>>
Mysql添加用户并授予只能查询权限
查看>>
mysql添加用户权限报1064 - You have an error in your SQL syntax问题解决
查看>>
mysql添加索引
查看>>
mysql添加表注释、字段注释、查看与修改注释
查看>>
mysql源码安装
查看>>
Mysql源码安装过程中可能碰到的问题
查看>>
MySQL灵魂16问,你能撑到第几问?
查看>>
MySQL灵魂拷问:36题带你面试通关
查看>>
mysql状态分析之show global status
查看>>
mysql状态查看 QPS/TPS/缓存命中率查看
查看>>
mysql生成树形数据_mysql 实现树形的遍历
查看>>
mysql用于检索的关键字_Mysql全文搜索match...against的用法
查看>>
MySQL用得好好的,为什么要转ES?
查看>>
MySql用户以及权限的管理。
查看>>
MySQL用户权限配置:精细控制和远程访问的艺术!------文章最后有惊喜哦。
查看>>
mysql用户管理、常用语句、数据分备份恢复
查看>>
MySQL留疑问:left join时选on还是where?
查看>>
mysql登陆慢问题解决
查看>>
MySQL的 DDL和DML和DQL的基本语法
查看>>